Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Determination of $$^{90}$$Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation

Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*

Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04

 Times Cited Count:0

Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a $$^{90}$$Sr$$^{2+}$$ quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed $$^{90}$$Sr$$^{2+}$$ in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify $$^{90}$$Sr$$^{2+}$$ in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.

JAEA Reports

Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*

JAEA-Review 2023-022, 93 Pages, 2023/12

JAEA-Review-2023-022.pdf:4.7MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays" conducted from FY2020 to FY2022. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, we have established the latest measurement system, such as the multiple $$gamma$$-ray detection methods, and the Spectral Determination Method (hereinafter referred to as "SDM") was developed. In the research in 2022, we developed a code that handles measurement data of LSC, singles Ge, and 2D spectra (multiple $$gamma$$). In addition, to develop an integrated database, spectral data of 40 nuclides were obtained by actual measurements and simulation calculations.

JAEA Reports

Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*

JAEA-Review 2022-037, 118 Pages, 2023/01

JAEA-Review-2022-037.pdf:6.92MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays" conducted in FY2021. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, we have established the latest measurement system, such as the multiple $$gamma$$-ray detection methods, and the Spectral Determination Method (hereafter referred to "SDM") was developed. In the study, the $$gamma$$-ray measuring device was installed, and the measurement system consisting of the Ge detector, CeBr$$_{3}$$ detector, and NaI detector was completed in FY2021. In the SDM development, standard spectra of $$gamma$$-ray singles, multiple $$gamma$$-ray measurements, …

JAEA Reports

Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*

JAEA-Review 2021-060, 105 Pages, 2022/03

JAEA-Review-2021-060.pdf:4.59MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays" conducted in FY2020. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, and develops the measurement system such as multiple $$gamma$$-ray detection method. We develop a spectral determination method (SDM method) for integrated analysis by constructing a spectral database for nuclides including $$beta$$-rays and X-rays by measurement using this system and radiation simulation calculation. This method enables simultaneous quantification of multiple nuclides and reduces the chemical separation process.

Journal Articles

A Two-dimensional scintillation neutron detector for TAKUMI diffractometer in J-PARC MLF

Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Harjo, S.; Sakasai, Kaoru; Aizawa, Kazuya

JPS Conference Proceedings (Internet), 33, p.011097_1 - 011097_6, 2021/03

A large area, two-dimensional scintillation neutron detector was developed for Takumi diffractometer in the J-PARC MLF. The detector is made based on a scintillator/wavelength shifting fiber technology. The detector has a neutron-sensitive area of 32 $$times$$ 32 cm with a pixel size of 5 $$times$$ 5 mm, which is about 1.5-fold larger than the SENJU detector TAKUMI is one of the neutron diffractometers in the MLF dedicated to use for engineering material research. The developed detector array adds new capabilities to the instrument to measure two-dimensional data collection at the back-scattering angles with a better time-of-flight resolution.

Journal Articles

A 64$$times$$64 cm$$^{2}$$ area position-sensitive scintillation neutron detector as an alternative to helium-3 gas based detector

Nakamura, Tatsuya; To, Kentaro; Honda, Katsunori; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Proceedings of 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2015), Vol.1, p.680 - 683, 2016/11

A two-dimensional scintillation neutron detector that has neutron-sensitive area of 64 $$times$$ 64 cm$$^{2}$$ was developed for neutron scattering instruments by using wavelength shifting fibers technology. We designed the detector to have a pixel size of 20 $$times$$ 20 mm$$^{2}$$. In order to compensate light attenuation occurred travelling along the wavelength-shifting fiber the scintillation light was read out from both sides of the fiber. The prototype detector exhibited a detection efficiency of 40% for 1.8${AA}$ neutrons, which was similar to previously developed detector with a smaller size of 32 $$times$$ 32 cm$$^{2}$$. The detailed detector design and experimental results measured by using the pulsed neutrons at the J-PARC/MLF are presented.

Journal Articles

Neutron spectra and angular distributions of concrete-moderated neutron calibration fields at JAERI

Yoshizawa, Michio; Tanimura, Yoshihiko; Saegusa, Jun; Nemoto, Hisashi*; Yoshida, Makoto

Radiation Protection Dosimetry, 110(1-4), p.81 - 84, 2004/09

 Times Cited Count:3 Percentile:23.51(Environmental Sciences)

The facility of Radiation Standards (FRS) of JAERI has equipped with the concrete-moderated neutron calibration fields as simulated workplace neutron fields. The fields use an Am-Be (37GBq) neutron source placed in the narrow space surrounded by concrete wall and bricks to produce scattered neutrons. The neutron spectra of the fields were measured with Bonner multi-sphere spectrometer system (BMS), spherical recoil-proton proportional counters (RPCs), and a liquid scintillation counter (NE-213). The results were compared with each other, and the neutron spectra and the ambient dose equivalent rate, ${it H}$$$^{*}$$(10), were agreed well within the uncertainty. The angular distributions of neutron fluence were calculated by the MCNP-4B2 Monte Carlo code to obtain the reference personal dose equivalent rate, ${it H}$$$_{p}$$(10). The calculated results show that the scattered neutrons have a wide variety of incident angles. The reference ${it H}$$$_{p}$$(10) values considered the angular distribution were found to be 10-18% smaller than those without consideration.

Journal Articles

Measurements of tritium and $$^{14}$$C production cross sections for 14.7-MeV neutrons on $$^{17}$$O and $$^{18}$$O

Y.M.Verzilov*; Ikeda, Yujiro; Maekawa, Fujio; Oyama, Yukio; D.L.Smith*

Nuclear Science and Engineering, 129(1), p.81 - 87, 1998/00

 Times Cited Count:1 Percentile:15.02(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

High Sensitive Plastic Scintillation Dose Counter

;

JAERI-M 6424, 23 Pages, 1976/03

JAERI-M-6424.pdf:0.69MB

no abstracts in English

JAEA Reports

JAERI type Radiation Monitoring Instrument

; ; ; ; ; ; ; ; ; ; et al.

JAERI-M 4964, 205 Pages, 1972/09

JAERI-M-4964.pdf:25.36MB

no abstracts in English

JAEA Reports

The Temparature Characteristics of the NaI(Tl) Scintillation Counter

; ;

JAERI-M 4648, 21 Pages, 1971/11

JAERI-M-4648.pdf:0.85MB

no abstracts in English

Oral presentation

A Two-dimensional scintillation neutron detector module for a new protein single crystal neutron diffractometer at J-PARC MLF

Nakamura, Tatsuya; To, Kentaro; Tsutsui, Noriaki; Ebine, Masumi; Birumachi, Atsushi

no journal, , 

A position-sensitive scintillation detector module for a new protein neutron diffractometer was developed by using a scintillator / wavelength shifting (WLS) fiber technology. The detector module has a spatial resolution of 2.5 mm with a neutron-sensitive area of 320 $$times$$ 320 mm$$^{2}$$. The WLS fibers are arranged in a regular pitch of 2.5 mm in x and y direction and those arrays are placed diagonally. The light reflecting grid is inserted in between the fibers in order for optical isolation and for mechanical support of the fiber. The detector implemented flat $$^{6}$$Li/ZnS screens up and downstream of the WLF fiber arrays. The detector exhibited a detection efficiency of 30-50% for thermal neutron (depending on $$gamma$$-ray sensitivities) and a count uniformity of ~13%. In this paper detailed detector design and experimental results obtained using a pulsed neutron beam are presented.

Oral presentation

Developing delayed gamma-ray spectroscopy for reprocessing plant nuclear safeguards; Neutron detection system development

Lee, H.-J.; Rodriguez, D.; Rossi, F.; Koizumi, Mitsuo; Takahashi, Tone

no journal, , 

13 (Records 1-13 displayed on this page)
  • 1